Clinical Trial: Comparison of Actifuse ABX and Local Bone in Spinal Surgery

Study Status: Terminated
Recruit Status: Terminated
Study Type: Interventional

Official Title: Actifuse ABX and Local Bone Have Comparable Outcomes to Local Bone in Instrumented Multi-Level Adult Spinal Deformity Patients

Brief Summary: This study is being done to compare people who had a standard of care spinal fusion using part of their local bone graft (a small amount of bone from the region of the spine where the fusion is occurring) to correct an adult spinal deformity and people who will have a standard of care spinal fusion using a mixture of Actifuse ABX® (a market approved bone graft substitute) and a local bone graft (a small amount of bone from the region of the spine where the fusion is occurring). This study will compare the outcomes of both groups to help the Orthopaedic surgeon conducting spinal fusions in the future. Investigators expect that Actifuse ABX® will be as good if not better than just a local bone graft.

Detailed Summary:

The current method for posterolateral lumbar fusion surgeries utilizes autograft bone typically derived from the patient's iliac crest. However, complications have been reported concerning the use of iliac crest bone, that include additional healing time due to the secondary surgical site and gait abnormalities. Clinicians are in need of an adequate alternative, and many have begun testing growth factors or synthetic compounds used in conjunction with local bone autografts. Though this avoids the need for a secondary surgical site, synthetic materials are not without their own limitations. These compounds must achieve similar growth and fusion rates as native bone. This study will test the applicability of Actifuse, a synthetic bone graft substitute, in instrumented multi-level adult spinal deformity surgery.

Actifuse is a silicate substituted calcium phosphate. It is osteostimulative, and is a bone void filler intended for orthopedic applications such as a filler for gaps and voids that are not intrinsic to the stability of the bony structure. Actifuse has several features that mimic human bone (amount of silicon, resorption rate, etc). It provides a scaffold for long-term bone healing and is intended to be packed gently into bony voids or gaps of the skeletal system, i.e. extremities, pelvis and spine including use in posterolateral spinal fusion procedures with appropriate stabilizing hardware. These defects may be surgically created osseous defects or osseous defects created from traumatic injury to the bone. The product provides a bone void filler that is resorbed and replaced by native bone during the healing process.

Actifuse accelerates bone growth by combining an interconnected macro- and micro- porous structure with osteostimulative chemistry created through a patented silicate substitution process to attach and
Sponsor: Ohio State University

Current Primary Outcome: Decrease patient recovery time [ Time Frame: 12 months ]

The investigators anticipate the Actifuse ABX® will decrease patient recovery time by 1) lowering the amount of autologous bone harvested from the patient and 2) taking advantage of the properties of Actifuse (osteostimulation, resorption rate, etc) that should result in quicker bone fusing and healing.


Original Primary Outcome: Decrease patient recovery time [ Time Frame: 12 months ]

We anticipate the Actifuse ABX® will decrease patient recovery time by 1) lowering the amount of autologous bone harvested from the patient and 2) taking advantage of the properties of Actifuse (osteostimulation, resorption rate, etc) that should result in quicker bone fusing and healing.


Current Secondary Outcome:

Original Secondary Outcome:

Information By: Ohio State University

Dates:
Date Received: April 30, 2013
Date Started: March 2013
Date Completion:
Last Updated: April 26, 2017
Last Verified: February 2014