Clinical Trial: Study of Smith-Lemli-Opitz Syndrome

Study Status: Recruiting
Recruit Status: Recruiting
Study Type: Observational

Official Title: Clinical and Basic Investigations Into Smith-Lemli-Opitz Syndrome

Brief Summary:

Smith-Lemli-Opitz Syndrome (SLOS) is a genetic disorder (autosomal recessive) caused by an abnormality in the production of cholesterol. The disorder can occur in both a "mild" or "severe" form. SLOS is associated with multiple birth defects and mental retardation. Some of the birth defects include; abnormal facial features, poor muscle tone, poor growth, shortened life span, and abnormalities of the heart, lungs, brain, gastrointestinal tract, limbs, genitalia, and kidneys.

There is no known cure for SLOS but recently patients have been treated with increased amounts of cholesterol in their diet. The cholesterol in a persons diet is unable to correct the abnormalities in the patient's organs, but researchers hope it will improve growth failure and mental retardation.

This study was developed to answer questions about the causes and complications of SLOS, as well as the effectiveness of cholesterol treatment. The study will enroll patients diagnosed with SLOS, and their mothers. The objectives of the study will be to address the following questions:

  1. <TAB> What is the prognosis / natural history of the demyelination in the nervous system of patients with SLOS?
  2. <TAB> Do patients with SLOS have other problems concerning the function of their endocrine systems?
  3. <TAB>What are the genetic make-ups of patients with SLOS?
  4. <TAB>Can further studies of cholesterol metabolism and genetic testing, using SLOS fibroblasts, increase the understanding of SLOS?<TAB>

Detailed Summary:

Smith-Lemli-Opitz syndrome (SLOS) is an autosomal recessive multiple congenital anomaly/mental retardation syndrome. Typical clinical features include a distinctive facial appearance, mental retardation, autistic behavior, hypotonia, failure to feed, poor growth, decreased life span, and variable structural anomalies of the heart, lungs, brain, gastrointestinal tract, limbs, genitalia and kidneys. The SLOS phenotypic spectrum is broad and variable. At the severe end of the spectrum SLOS is a lethal disorder with multiple major congenital anomalies; whereas, mild cases of SLOS present with a combination of minor physical stigmata, behavioral problems, and learning disabilities. SLOS is due to an inborn error of cholesterol biosynthesis. Biochemically, SLOS patients have a deficiency of 3beta-hydroxysterol delta(7)-reductase activity. 3beta-hydroxysterol delta(7)-reductase is an NADPH dependent microsomal enzyme that catalyzes the reduction of the C7(8) double bond of 7-dehydrocholesterol (7-DHC) to yield cholesterol in the last step of cholesterol biosynthesis via the Kandutsch-Russel pathway. This inborn error of cholesterol biosynthesis results in elevated tissue and serum 7-DHC levels and typically decreased serum and tissue cholesterol levels. In 1998 we established that the deficiency in 3beta-hydroxysterol delta(7)-reductase activity is due to mutation of the 3beta-hydroxysterol delta(7)-reductase gene (DHCR7). Once the biochemical defect in SLOS was identified, dietary cholesterol supplementation was proposed and employed as a therapeutic approach. Although developmental malformations remain fixed, dietary cholesterol supplementation appears to improve the overall health of these patients, and initial results have shown that dietary cholesterol supplementation has had a positive impact on some of the behavioral manifestations of this disorder. Although our understanding of this disorder has advanced over the last f
Sponsor: Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)

Current Primary Outcome:

Original Primary Outcome:

Current Secondary Outcome:

Original Secondary Outcome:

Information By: National Institutes of Health Clinical Center (CC)

Dates:
Date Received: November 3, 1999
Date Started: March 19, 1998
Date Completion:
Last Updated: April 20, 2017
Last Verified: September 2, 2016