Clinical Trial: Pilot Study to Assess the Proteome in Human Atrial Tissue

Study Status: Completed
Recruit Status: Completed
Study Type: Observational

Official Title: Pilot Study to Assess the Proteome in Human Atrial Tissue

Brief Summary:

The concept of diabetic cardiomyopathy was initially defined more than 30 years ago, as cardiac failure in diabetic subjects in the absence of underlying coronary artery disease. Diabetes is also thought to contribute to earlier stage cardiac systolic dysfunction and/or to isolated diastolic dysfunction, in excess of underlying coronary artery disease and hypertension. More globally, it is recognized that subjects with type 2 diabetes have more extensive cardiovascular disease and a worse outcome for a similar level of disease than non-diabetic subjects. Despite this epidemiological evidence, the biological programming underpinning the myriad presentations of the diabetic heart' are poorly characterized in humans.

Proteomics has emerged as an unbiased technology that enables the measurement of large numbers of steady-state protein levels. The potential to identify a diabetes associated proteomic signature in the heart would be a novel approach to identify putative biological programs altered by the diabetic state.

A portion of the right atrial appendage is removed to insert the cardiac bypass machine cannula in certain cardiothoracic procedures. This tissue is usually discarded, however, we propose that it could be employed to examine whether otherwise similar subjects with and without diabetes have distinct atrial proteomic signatures. This pilot study may provide insight into potential biological pathways that orchestrate the worse cardiac prognosis in type 2 diabetic versus non diabetic control subjects.


Detailed Summary:

The concept of diabetic cardiomyopathy was initially defined more than 30 years ago, as cardiac failure in diabetic subjects in the absence of underlying coronary artery disease. Diabetes is also thought to contribute to earlier stage cardiac systolic dysfunction and/or to isolated diastolic dysfunction, in excess of underlying coronary artery disease and hypertension. More globally, it is recognized that subjects with type 2 diabetes have more extensive cardiovascular disease and a worse outcome for a similar level of disease than non-diabetic subjects. Despite this epidemiological evidence, the biological programming underpinning the myriad presentations of the diabetic heart' are poorly characterized in humans.

Proteomics has emerged as an unbiased technology that enables the measurement of large numbers of steady-state protein levels. The potential to identify a diabetes associated proteomic signature in the heart would be a novel approach to identify putative biological programs altered by the diabetic state.

A portion of the right atrial appendage is removed to insert the cardiac bypass machine cannula in certain cardiothoracic procedures. This tissue is usually discarded, however, we propose that it could be employed to examine whether otherwise similar subjects with and without diabetes have distinct atrial proteomic signatures. This pilot study may provide insight into potential biological pathways that orchestrate the worse cardiac prognosis in type 2 diabetic versus non diabetic control subjects.


Sponsor: National Heart, Lung, and Blood Institute (NHLBI)

Current Primary Outcome:

Original Primary Outcome:

Current Secondary Outcome:

Original Secondary Outcome:

Information By: National Institutes of Health Clinical Center (CC)

Dates:
Date Received: December 21, 2007
Date Started: December 14, 2007
Date Completion: September 23, 2011
Last Updated: January 24, 2017
Last Verified: September 23, 2011