Clinical Trial: Spectral Domain Optical Coherence Tomography Imaging of the Eyes of Neonates

Study Status: Completed
Recruit Status: Completed
Study Type: Interventional

Official Title: Spectral Domain Optical Coherence Tomography Imaging of the Eyes of Neonates

Brief Summary:

Brief Summary

The purpose of this study is to better characterize the retina and optic nerve in newborns using spectral domain optical coherence tomography (s-oct). This new technology provides a very detailed cross-section picture of the cellular layers in the retina and a 3-dimensional picture of the optic nerve head and the fovea (the center of the retina that provides the most accurate vision). These images have been used by doctors for more than 5 years to help diagnose and treat adults with eye diseases, such as macular degeneration, diabetic retinopathy, retinal detachments, and melanoma. But, it has never been studied in newborns. In newborns, it would potentially help in the diagnoses of glaucoma, optic nerve hypoplasia, foveal hypoplasia, and colobomata among many other disorders. Prior to diagnosing disorders, it is necessary to establish normal values. It is the purpose of this investigation to study the retina and optic nerves in neonates to establish normal values.

After a parent of a normal newborn provides a written consent, the baby will be taken to the Eye Clinic where the instrument is located. The baby will be swaddled in one or more blankets as needed. The infants will be held in front of the instrument by a nurse. The technician will move the lens of the instrument to about 2 to 4 inches from the baby's eye. The mild light from the instrument will then enter the eye for a few seconds to obtain the desired image. The image can be captured through an immobile eye within 5 seconds. If the baby is fussy, he or she may be given a few drops of a sugar (sucrose) solution on a pacifier for calming. Although the images can usually be secured through a normal pupil, if the pupil is found to be too small, two drops of Cyclomydril will be placed on the eye for dilation. This is the eye drop used everyday in the E

Detailed Summary:
Sponsor: University of California, Los Angeles

Current Primary Outcome: Specific eye measurements by SD-OCT, including retinal nerve fiber layer thickness per quadrant, foveal depth, optic cup area and depth, optic nerve/foveal distance and depth of various layers within the retina to determine neonatal baseline values. [ Time Frame: 24 months ]

A spreadsheet of the data collected from the study population will be created. The data will be derived from analysis of the images captured by the instrument. Software within the computer of the instrument will provide data from each image including measurements of retinal nerve fiber layer thickness in each quadrant, depth of the fovea, depth and area of the optic cup, distance from the optic nerve to the fovea, and depth of the various layers within the retina. These parameters will be calculated to establish normal values for the first time.


Original Primary Outcome: Same as current

Current Secondary Outcome:

Original Secondary Outcome:

Information By: University of California, Los Angeles

Dates:
Date Received: May 10, 2011
Date Started: January 2011
Date Completion:
Last Updated: December 30, 2015
Last Verified: December 2015